меню

Расчет дробного выражения 6(1/5) - 7(2/8) = -1(1/20)

  Калькулятор дробей умеет приводить дроби к общему знаменателю, переводить из смешанного вида к простому, находить наибольший общий делитель, сокращать или упрощать дроби. Каждое действие имеет подробное описание и вывод промежуточного результата.
  Так же калькулятор позволяет произвести онлайн основные арифметические операции с дробями - сложение, вычитание, умножение и деление. Дроби могут быть введены в простом или смешанном виде. 
  Данный калькулятор дробей умеет находить решения различными способами, при этом на экран выводится наиболее простой из найденых вариантов решения.

  • Калькулятор
  • Инструкция
  • История
Вид дроби: Простые Смешанные
x

x

=

Распечатать
Показать видео решения
Решение:
Введено
6
1
5
-
7
2
8
=
1. Сокращение
6
1
5
-
7
1 · 2
4 · 2
=
6
1
5
-
7
1
4
=
2. Под общий знаменатель 20
6
1 · 4
5 · 4
-
7
1 · 5
4 · 5
=
6
4
20
-
7
5
20
=
3. Вычитание целых частей
6 - 7 +
4
20
-
5
20
=
-1 +
4
20
-
5
20
=
4. Вычитание дробей
-1 +
4-5
20
=
-1
-
1
20
=
Ответ
 -1
1
20
=
Ответ
-1.05
Детальное объяснение решения:
1.Сократим вторую дробь на 2
6
1
5
-
7
2
8
=
6
1
5
-
7
1 · 2
4 · 2
=
6
1
5
-
7
1
4
2.Приведение к общему знаменателю 20
Домножитель первой дроби 4
Домножитель второй дроби 5
6
1
5
-
7
1
4
=
6
1 · 4
5 · 4
-
7
1 · 5
4 · 5
=
6
4
20
-
7
5
20
3.Вычитание целых частей
6
4
20
-
7
5
20
= 6 - 7 +
4
20
-
5
20
=
-1 +
4
20
-
5
20
4.Вычитание дробей с общими знаменателями
-1 +
4
20
-
5
20
=
-1 +
4-5
20
=
-1
-
1
20
5.Вычитание целого числа и дроби
-1
-
1
20
=
 -1
1
20
=
-1.05
Сохранить это решение:
Скопировано

Калькулятор дробей работает по общим правилам вычислений операций с дробями. Но в определенных ситуациях калькулятор может пренебречь правилами в пользу наиболее изящного и простого решения.
 

Сложение обыкновенных дробей
Чтобы сложить две обыкновенные дроби необходимо:
  1. Привести дроби к одному знаменателю. Желательно найти наименьший общий знаменатель.
  2. Сложить числители, при этом знаменатель оставить без изменений.
  3. При необходимости сократить дробь.
  4. При получении в ответе неправильной дроби перевести ее в смешанный вид.
 
Вычитание обыкновенных дробей
Чтобы вычесть одну обыкновенную дробь из другой необходимо:
  1. Привести дроби к одному знаменателю. Желательно найти наименьший общий знаменатель.
  2. Вычесть из числителя первой дроби числитель второй дроби, при этом знаменатель оставить без изменений.
  3. При необходимости сократить дробь.
  4. При получении в ответе неправильной дроби перевести ее в смешанный вид.
 
Умножение обыкновенных дробей
Чтобы умножить одну обыкновенную дробь на другую необходимо:
  1. Умножить числитель первой дроби на числитель второй дроби.
  2. Умножить знаменатель первой дроби на знаменатель второй дроби.
  3. При необходимости сократить дробь.
  4. При получении в ответе неправильной дроби перевести ее в смешанный вид.
 
Деление обыкновенных дробей
Чтобы разделить одну обыкновенную дробь на другую необходимо:
  1. Найти обратную дробь от любой из двух дробей. Для этого необходимо поменять числитель и знаменатель местами.
  2. Умножить полученную дробь на вторую дробь.
  3. При необходимости сократить дробь.
  4. При получении в ответе неправильной дроби перевести ее в смешанный вид.

Похожие калькуляторы: